If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+9b-15=0
a = 1; b = 9; c = -15;
Δ = b2-4ac
Δ = 92-4·1·(-15)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{141}}{2*1}=\frac{-9-\sqrt{141}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{141}}{2*1}=\frac{-9+\sqrt{141}}{2} $
| 2x+3=3(x-1 | | 5w+4-2w=24-2w | | 6x-5x=13-7 | | 3x-x=15-5 | | (2x+10)(2x+10)x(2x)(3)= | | -d/4=-31 | | 32x+2+33x+-2=180 | | 11x-2+11x-2=180 | | 3(z-4)=2z | | x15-6=1 | | 3z-12=2z | | x15-6=12 | | -4x+6=7 | | 16x2-12x-4=0 | | y/7-3.5=-5.2 | | 9x+25=88 | | -0.5f=30 | | 3/4d=-9 | | 17=3d+8 | | 3y+6=18y= | | 5(x+11-3x)=35 | | 16x=512 | | 10(9-x)+x+27=10x+(9-x) | | 8x^2=11-2x | | 3x-2/5=8x+13 | | 2t^2=-11t-5 | | 9h–8h=7 | | 10x=(5x^2)-120 | | 10d–6d=4 | | (2^3x)=123 | | (2^3x-5)=128 | | 65+48=18011x+48=180 |